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ResNet-18 BERT-Base BERT-Base Bits | Exponent Value Fraction Value Value in Decimal
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-1 o 12 3 ° —02 00 02 %0 -0 _-40 20 o _ 1001 6—1=5 1 32
St | . 6 _
g . PoT ; 1000 7-1=6 1 20 x 1 = 64
S High precision Wide range 1
e Table II: The value table of 4-bit unsigned £1int with the
k= Uniform-like Gaussian-like Laplace-like .
exponent bias of —1. The blue numbers are the first-one-
Figure 1: Intra-tensor and inter-tensor adaptivity. encoded exponent and “x” is mantissa with value of O or

1.

Cong Guo et al., ANT: Exploiting Adaptive Numerical Data Type for Low-bit Deep Neural Network Quantization, MICRO 2022
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Cong Guo et al., OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization, ISCA 2023
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Song Han et al., EIE: efficient inference engine on compressed deep neural network, ISCA 2016
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Figure 2. Matrix W and vectors a and b are interleaved over 4 PEs.
Elements of the same color are stored in the same PE.
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Figure 4. (a) The architecture of Leading Non-zero Detection Node. (b) The architecture of Processing Element.
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Jie-Fang Zhang et al., SNAP: An Efficient Sparse Neural Acceleration Processor for Unstructured Sparse Deep
Neural Network Inference, JSSC 21
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Front-end: Index Matching&8oiZBUEISEI=RY W-IA pairs, IRSIREEFIFIAER
Back-end: 4 partial sum [E4g, PE-level #1 core-level, RAAFIHIAIMSE
- RiEtE: core-levelfIEERILAISARERITE
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HZMEENSAIRIEEE——NV Sparse TensorCore AT ER

- 2020£F, HmFXRHEHAmMpere?2 s, ZISHEHEEKETE
« Ampere 2 aZIFEIERN2:4FEHRIE, BIE41 =R, 2980, FHEEEISSCIN2(EAMNELL
- ZIEEERAT LR AENEEMHN:MEE, BISM4t=d, N0

Structured-sparse Structured-sparse and
matrix W compressed matrix W epl
- 25% sparsity
E—————_
Fine-grained
structured-sparse
matrix format
R > R
R X C/2 elements +
R X C/2 2bits meta Step 2
data sparse finetuning
C i F— C/2 — F——C/2
D = zero entry Non-zero data 2-bits Step 3
values indices 50% sparsity &
sparse finetuning
—

Reference: NV Technical Blog
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